Mapping the Obesity in Iran by Bayesian Spatial Model
نویسندگان
چکیده
BACKGROUND One of the methods used in the analysis of data related to diseases, and their underlying reasons is drawing geographical map. Mapping diseases is a valuable tool to determine the regions of high rate of infliction requiring therapeutic interventions. The objective of this study was to investigate obesity pattern in Iran by drawing geographical maps based on Bayesian spatial model to recognize the pattern of the understudy symptom more carefully. METHODS The data of this study consisted of the number of obese people in provinces of Iran in terms of sex based on the reports of non-contagious disease's risks in 30 provinces by the Iran MSRT disease center in 2007. The analysis of data was carried out by software R and Open BUGS. In addition, the data required for the adjacency matrix were produced by Geo bugs software. RESULTS The greatest percentage of obese people in all age ranges (15-64) is 17.8 for men in Mazandaran and the lowest is 4.9 in Sistan and Baluchestan. For women the highest and lowest are 29.9 and 11.9 in Mazandaran and Hormozgan, respectively. Mazandaran was considered the province of the greatest odds ratio of obesity for men and women. CONCLUSION Recognizing the geographical distribution and the regions of high risk of obesity is the prerequisite of decision making in management and planning for health system of the country. The results can be applied in allocating correct resources between different regions of Iran.
منابع مشابه
Assessment of Neonate's Congenital Hypothyroidism Pattern Using Poisson Spatio-temporal Model in Disease Mapping under the Bayesian Paradigm during 2011-18 in Guilan, Iran
Background: Congenital Hypothyroidism (CH) is one of the reasons for mental retardation and defective growth in neonates. It can be treated if it is diagnosed early. The congenital hypothyroidism can be diagnosed using newborn screening in the first days after birth. Disease mapping helps to identify high-risk areas of the disease. This study aimed to evaluate the pattern of CH using the Poisso...
متن کاملExploring the spatial patterns of three prevalent cancer latent risk factors in Iran; Using a shared component model
Background and aims: The aim of this study was the modeling of the incidence rates of Colorectal, breast and prostate cancers using a shared component model in order to explore the spatial pattern of their shared risk factors (i.e., obesity and low physical activity) affecting on cancer incidence, and also to estimate the relative weight of these shared components. Methods: In this study,...
متن کاملBayesian Analysis of Spatial Probit Models in Wheat Waste Management Adoption
The purpose of this study was to identify factors influencing the adoption of wheat waste management by wheat farmers. The method used in this study using the spatial Probit models and Bayesian model was used to estimate the model. MATLAB software was used in this study. The data of 220 wheat farmers in Khouzestan Province based on random sampling were collected in winter 2016. To calculate Bay...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملBayesian Analysis of Censored Spatial Data Based on a Non-Gaussian Model
Abstract: In this paper, we suggest using a skew Gaussian-log Gaussian model for the analysis of spatial censored data from a Bayesian point of view. This approach furnishes an extension of the skew log Gaussian model to accommodate to both skewness and heavy tails and also censored data. All of the characteristics mentioned are three pervasive features of spatial data. We utilize data augme...
متن کامل